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• Quark masses – fundamental parameters of the Standard
Model.

• Many applications to phenomenology and BSM physics.
Example: Higgs partial widths.

I Couplings proportional to quark masses.

I Main source of uncertainty in partial [1404.0319]
widths from mb, mc, αs.

• Focus on precision results using three independent
methods.
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Outline

• Background
I Lattice simulations

I Mass determinations

• Quark mass methods
I Current-current correlator moments

I Regularisation Invariant (RI) methods

I Minimal renormalon subtraction (MRS) masses

• Summary & Outlook
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Lattice QCD simulations - I

Regulate QCD using a (Euclidean) spacetime lattice.

Integrate out fermionic degrees of freedom.

Z =
∫
DUDψ̄Dψe−

∫
(LYM+ψ̄Dψ)

=
∫
DU (detD) e−

∫
LYM

Generate gluon configurations using Monte Carlo techniques.

Effects of sea quarks are included in the determinant of the
Dirac matrix.
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Lattice QCD simulations - II

Calculate valence quark propagators on gluon field
configurations.

D−1 =

Tie together the quark propagators to create correlation
functions.

π π〈π π†〉 =
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Lattice QCD simulations - III

Energies and matrix elements are determined by fitting
(sums of) exponentials.

〈π(t) π†(0)〉 −→
large t

|〈0|π|π〉|2
2mπ

e−mπt ∝ f2
π e
−mπt
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Tuning mass input parameters

Bare quark masses are input parameters to lattice simulations.
These parameters are tuned to reproduce physical quantities,
e.g.

• mud0 → m2
π

• ms0 → m2
K

• mc0 → mηc

Tuning performed at multiple lattice spacings, defining a
continuum trajectory for which a2 → 0 limit can be taken.

• Rest of physics is then prediction of QCD.

• Parameters can be varied away from physical values..
understand effect of quark mass, quantify systematics, etc.
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Meson masses – summary plot
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Decay constants – summary plot
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MILC ensembles [1004.0342, 1212.4768]

• HISQ fermion action.
I Discretization errors begin at O(αsa

2).
I Designed for simulating heavy quarks (mc and higher at

current lattice spacings).

• Symanzik-improved gauge action, takes into account
O(Nfαsa

2) effects of HISQ quarks in sea. [0812.0503]

• Multiple lattice spacings down to ∼ 0.045 fm.

• Effects of u/d, s, and c quarks in the sea.

• Multiple light-quark input parameters down to physical
pion mass.

I Chiral fits.
I Reduce statistical errors.
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MILC ensemble parameters
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Quark mass definitions

• Quarks are not asymptotic (physical) states due to
confinement – mass cannot be measured directly.

• Quark masses are scheme and scale dependent, mscheme
q (µ).

• Generally will quote results mMS
q (µref).

• Lattice input quark masses are non-universal (depend on
discretisation), but can be connected to quark masses
defined in a continuum scheme.
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〈JJ〉-correlator moments
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Current-current correlators

Calculate time-moments of J5 ≡ ψ̄hγ5ψh correlators:

G(t) = a6
∑
x

(am0h)2〈J5(t,x)J5(0, 0)〉

Lattice QCD is best method to determine quark masses
mq,latt determined very accurately by fixing a  meson mass 
to be correct. e.g. for mc fix M⌘c

Issue is conversion to the          schemeMS
•  Direct method

mMS(µ) = Z(µa)mlatt

Calculate Z perturbatively or partly nonperturbatively. 
• Indirect methods: (after tuning           ) match a quantity 
from lattice QCD to contnm pert. th. in terms of        mass       

J J

 Chetyrkin et al, 0907.2110

e.g. q2-derivative moments of current-current 
correlators (vac. pol.function) for heavy 
quarks known through       . 
Calc. on lattice as time-moments of ‘local’ 
meson correlation function

mlatt
MS

↵3
s

 HPQCD + Chetyrkin et al, 0805.2999, C. Mcneile et al, HPQCD,1004.4285 

*masses 
important for 
Higgs cross-
sections*

• Currents are absolutely normalized (no Zs required).

• G(t) is UV finite → G(t)cont = G(t)latt +O(a2).
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Moments

The time-moments Gn =
∑

t(t/a)nG(t) can be computed in
perturbation theory. For n ≥ 4,

Gn =
gn(αMS, µ)

amh(µ)n−4
.

Basic strategy:

1. Calculate Gn,latt for a variety of lattice spacings and mh0.

2. Compare continuum limit Gn,cont with Gn,pert (at reference
scale µ = mh, say).

3. Determine best-fit values for αMS(mh),mh(mh).
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Reduced moments

In practice comparison carried out using reduced moments.

R4 = G4/G
(0)
4

Rn =
1

m0c
(Gn/G

(0)
n )1/(n−4) (n ≥ 6) .

On the perturbative side,

R4 = r4(αMS, µ)

Rn =
1

mc(µ)
rn(αMS, µ) (n ≥ 6) .

Reference scale is taken as µ = 3mh(= mc
mh0
mc0

).
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Some details

• Calculate moments for n = 4, 6, 8, 10.

• Three lattice spacings: a ≈ 0.12, 0.09, 0.06 fm. (MILC)

• Seven input masses from mh = mc – 0.7mb.

All data points fit simultaneously with perturbative Rn
expressions → mMS

c (µ), αMS(µ) for µ ≈ 3 – 9 GeV.
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Results for nf = 4 [1408.4169]
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• Discretization effects grow
with amh and decrease
with n.

• Grey band shows best-fit
mc(3mc) evolved
perturbatively.

mMS
c (3 GeV) = 0.9851(63) GeV
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Mass ratios

m10

m20
=
m1MS(µ)

m2MS(µ)
+O(a2)

• Tuning of simulation → accurate determination of bare
ratios.

• Precise determination of one renormalized mass can be
translated to other masses.
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mc/ms (nf = 4) [1408.4169]
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mc/ms = 11.652(65)→ mMS
s (2 GeV) = 93.6(8) MeV.
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αMS
s (mZ)

HPQCD 〈JJ〉 result:

• αMS
s (mZ) = 0.1182(7)

• Agrees with nf = 3 result.

• Agrees well with world
average.

New lattice result from ALPHA collaboration using
Schrodinger Functional and step-scaling:

αMS
s (mZ) = 0.1185(8) [1706.03821]
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RI intermediate schemes
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NPR method

Trying to determine ZMS
m (µ, 1/a) st

mMS(µ) = ZMS
m (µ, 1/a)m0

Options:

• Lattice perturbation theory. – difficult!

• Alternatively, use two steps:
latt ↔ intermediate(continuum-like) ↔ MS
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NPR method

General idea is to renormalize operators using a scheme that is
well-defined both in the continuum and on the lattice, e.g. the
RI schemes:

Calculate off-shell Green’s functions of operator-of-interest with
external quark states.

GijΓ (p) = 〈qi(p)
(∑

x

q̄(x)Γq(x)

)
q̄j(−p)〉amp

Require that the trace of the renormalized operator takes its
tree-level value:

ΛΓ(p) ≡ 1

12
Tr [ΓGΓ(p)] ' Zq(p)

ZΓ(p)
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NPR method (cont.)

The RI (and MS) schemes satisfy Zm = Z−1
S = Z−1

P . Zm can be
extracted from the scalar correlator provided

ΛQCD � |p| � π/a

After determining ZRIm (p), a perturbative calculation can be

used to convert ZMS(p) = CMS←RI(p)ZRIm (p).
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RI/SMOM scheme

• Momentum flow suppresses
infrared effects.
p2

1 = p2
2 = (p1 − p2)2

• p1 ∼ (x, x, 0, 0),
p2 ∼ (0, x, x, 0) for
x = 2, 3, 4

• Other advantages:
I Reduced mass

dependence.
I SMOM → MS matching

factors closer to 1.
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ZS − ZP
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Zm chiral extrapolation
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Checking systematics

Effect of varying charm, strange, and light sea masses:
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Continuum extrapolations
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Continuum extrapolations
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mc comparison plot
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ms comparison plot
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Renormalon subtracted masses
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HQET masses

Mass of a heavy meson H in heavy quark effective theory
(HQET)

MH = mQ + Λ +
µ2
π

2mQ
− µ2

G(mQ)

2mQ
+ · · · ,

where

• mQ: Pole mass of the heavy quark Q

• Λ: Energy of light quarks and gluons

• µ2π
2mQ

: Kinetic energy of heavy quark

• µ2G(mQ)
2mQ

: Hyperfine energy due to heavy quark spin

Want to relate pole mass to MS mass,

Meson mass ↔ quark pole mass ↔ quark MS mass
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mQ ↔ mMS
[1701.00347]

Perturbative series connecting the pole mass to the MS mass
(known to four loops) diverges due to renormalons,

mpole = m

(
1 +

∞∑
n=0

rn α
n+1
s (m)

)
,

with

rn ∝ (2β0)nΓ(n+ b+ 1) as n→∞

but can be interpreted using Borel summation. After
subtracting the (leading) renormalon from the pole mass, there
is a well-behaved connection between the subtracted mass and
the MS mass.

mpole → mMRS +O(ΛQCD)
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mQ ↔ mMS
[1712.04983]

mpole + Λ = m

(
1 +

∞∑
n=0

rn α
n+1
s (m)

)
+ Λ→

m

(
1 +

∞∑
n=0

[rn −Rn]αn+1
s (m)

)
+ JMRS(m) +

[
δm + Λ

]
= mMRS + ΛMRS

rn = (0.4244, 1.0351, 3.6932, 17.4358, . . . )

Rn = (0.5350, 1.0691, 3.5966, 17.4195, . . . )

rn −Rn = (−0.1106,−0.0340, 0.0966, 0.0162, . . . )
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MRS - calculation

Measure meson mass MHs varying heavy input mass amh,0.

mMS
h (µ) = mMS

r (µ)
amh,0

amr,0
+O(a2) ,

with mMS
r (µ) treated as a fit

parameter.

• Fit data including
discretization artifacts as
as well as HQET
parameters ΛMRS, µ2

π,
µ2
G(µ).

• Evaluate fit at MDs ,MBs

to obtain mc, mb.
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MRS - preliminary results J. Komijani QWG 2017

mMS
s (2 GeV) = 92.66(28)stat(40)sys(48)αs(11)fπ,PDG

MeV

mc = 1274(3)stat(3)sys(9)αs(0)fπ,PDG
MeV

mb = 4206(8)stat(8)sys(6)αs(1)fπ,PDG
MeV

These results can be compared e.g. with current-correlator
results:

mMS
s (2 GeV) = 93.6 (8) MeV [1408.4169]

mc = 1271 (10) MeV

mb = 4196 (23) MeV [1408.5768]
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Summary and Outlook - I

• Bare input mass parameters can be tuned to reproduce
hadron masses measured in experiment, and can also be
varied away from physical values.

• Now several independent and complementary techniques
which establish strange, charm, and bottom quark masses
at the (sub-)percent level.

• It is increasingly feasible to perform relativistic simulations
with b quarks – currently some form of effective theory is
used or an extrapolation to mb is required – these
techniques can then be applied in the same way as for
charm [already the case for MRS].
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Summary and Outlook - II

• RI/SMOM intermediate scheme
I Perturbative and IR (condensate) uncertainties decrease

with lattice spacing.
I Main uncertainty comes from tuning uncertainties - need

improved determinations of lattice spacings and input
masses.

• Current-current correlators
I Main uncertainty from perturbation theory.
I Finer lattice means reference scale amh can be increased.
I See talk by A. Veernala (FNAL/MILC) Lattice 2017.

• MRS subtracted masses
I Calculation already includes a ∼ 0.045 fm lattices.
I Uncertainty in αs is a major source of error.

The main results presented here use MILC lattice ensembles –
important to calculate with additional fermion formulations!
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Thank you!






